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Fig. 14. Measured and calculated frequency response of the experimental
bandpass filter.
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Fig. 15. Measured spurious response of the fabricated bandpass filter.

filter, it was necessary to tune resonators with tuning screws, but
no adjustment of coupling capacitors was required, so coupling
capacitors were precisely determined by photolithographic tech-
nology.

Fig. 13 shows the outer view of the fabricated filter. Its
physical dimensions are 80 mm (length) X14 mm (width) X20 mm
(height) and its volume is 22.4 cn?,

Fig. 14 shows the measured and calculated frequency response
of the experimental bandpass filter. The solid and dotted lines
indicate the measured and calculated responses, respectively. The
fabricated filter performance shows close coincidence with the
design results. Therefore, the propriety of the design formulas is
experimentally verified. Passband insertion loss was obtained at
1.6 dB at midband and 1.85 dB at band edge.

Fig. 15 shows the measured spurious response. It is similar to
the spurious response of the computer simulation. But the spuri-
ous response near 3.8 GHz doesn’t appear in the simulation. The
spurious response near 3.8 GHz is different from that of the
TEM mode in a coaxial resonator, UIR, and SIR. Consideration
concerning spurious frequency and the diameter of the resonator
proved this unknown mode to be a TE,, mode. :
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A method of designing capacitively coupled bandpass filters
with arbitrarily structured resonators was established and the
fabricated filter performance showed close coincidence with the
design results. It is shown that wide stopband characteristics can
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be realized by combining quarter-wavelength uniform impedance
resonators (UIR’s) with stepped impedance resonators (SIR’s).
The special feature of this filter is that the spurious response can
be controlled by the impedance ratio K of the SIR and the
combination of UIR’s and SIR’s.
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Conservation Laws for Distributed Four-Ports

0. SCHWELB, MEMBER, IEEE, AND R. ANTEPYAN, STUDENT
MEMBER, 1EEE

Abstract —Condition of reciprocity, losslessness, bilateral symmetry,
transversal symmetry, and semireciprocity is given for a four-port in terms
of its impedance, admittance, scattering, and transfer representation. Cor-
responding conditions are also presented for the system coupling matrix of
a uniform distributed circuit. The results are applied to an anisotropic
stratified waveguide.

1. INTRODUCTION

Classical network analysis has provided invaluable analytical
tools for the design of microwave devices. Circuit methods,
however, are far less prevalent in integrated optics, acoustooptics,
and related areas. The purpose of this paper is to provide, in
tabular form, conditions for certain properties of integrated cir-
cuits. These properties include reciprocity, losslessness, bilateral
and transversal symmetry, and semireciprocity. The last one of
these, exhibited by anisotropic media, appears to be novel.

The conservation laws are expressed in terms of various, com-
monly used terminal representations, such as impedance, admit-
tance, scattering, scattering transfer, etc., as well as in terms of
the system coupling matrix of a uniform distributed network.
Conversion from one representation to another is facilitated by a
computer program developed by one of the authors (RA). The
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tabulated expressions have proved to be useful in numerical
analysis and design, where they can be implemented to test for
the validity and accuracy of computed results.

Since a number of the integrated devices are four-ports, or can
be viewed as such, as for example the anisotropic slab waveguide
supporting a TE-TM hybrid mode, we found it practical to
restrict this treatment to four-ports, although the analysis has
been extended to 2n-ports.

Network representations and the system coupling matrix of
uniform distributed parameter devices are defined in Section IL
Generalized Pauli matrices, introduced in Section III, make it
possible to express the conservation laws in compact form. A
table, listing conditions for reciprocity, losslessness, bilateral
symmetry, transversal symmetry, and semireciprocity, is pre-
sented in Section IV. An application from the area of electromag-
netic wave propagation in anisotropic media concludes the paper.

II. NoTATION

Referring to Fig. 1, illustrating a four-port, its terminal param-
eter sets and two possible axes of symmetry, the following
notation is adopted:(a) = col [a,, a,, a5,a,] is the vector of the
incident waves, and analog vectors denote the reflected waves
(b), the port voltages (V) and the port currents (I). These
vectors are linearly related via the network matrices. Thus, V=
ZI I =YV, and b= Sa. The impedance transfer and scattering
transfer matrices are defined by

" [ 4 by
V, Vs a, b,

= =T 1
L|=e - | ™, a; M
IZ _I4 b2 a,

respectively. Two other often used representations, denoted by 4

and M, are related to the 7 matrix through the expressions
AATITTIAT and M=TIT '

)

respectively, where

0
=11 1
0

oo o
oo O
|l == = =]

In addition to the terminal parameters, Fig. 1 also indicates
waves traveling forward and backward along the x coordinate
which is seen as the axial coordinate of a distributed network,
internal to the black box. The previously defined transfer matrix
M can therefore also be viewed as a function of x

a(x) = M(x)a(0) €

where, in distinction from the previously defined terminal vec-
tor a

a(x) £ col[ af (x), a7 (x), a5 (x),a; (x)]. (4)

Alternatively, the voltages and currents at a given x location can
be referred to those at a reference location by the expression

g(x) =07 (x)2(0) %)

where g(x) = col [V1(x), ;(x), V5(x), [,(x)] and g(x) = ILg(x).
Clearly, one must define a transformation to link voltages and
currents on the one hand to forward and backward traveling
waves on the other. Adopting the so-called traveling-wave repre-
sentation [1], this transformation is given by

g(x)=Qa(x) (6)
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Fig. 1. To the definition of four-port representations.
where
zZvr 7 0 0
-12 _ —1/2
gL Z zZV 0 0 (7)
1/2 1/2
V2| O 0 zy/ zY/
0 0 zZ;Vr - z7\?

and Z, and Z, are appropriately chosen characteristic imped-
ances.

Bearing in mind that the network is distributed in the x
direction, and that the wave parameters at x + dx are linearly
related to those at x, one can specify at the outset that

4 o(x)= - jRa(x) ®)

where R is the system coupling matrix [2]. In keeping with the
assumption of uniformity, R must be a constant. When (3) is
substituted into (8) and consideration is given to the fact that
a(0) is arbitrary, one finds that

©)

It can also be shown [2] that R and M(x) have the same set of
eigenvectors and that, as a consequence, they commute.

;,a-’;M(x) =M'(x)=— jRM(x).

III. GENERALIZED PAULI MATRICES

Generalized Pauli matrices provide the means to compactly
express the conservation laws of four-ports. They are given by
(E, is the 2 X2 identity matrix):

E, 0 E 0
oo=E=|" o=
o™ lo EPY [0 -E

0 E o -E

o P Y (10
and their tilde transforms & =IIo,II,i=0,1,2,3. The gener-
alized Pauli matrices are unimodular (determinant is unity), in-
volutive (their square is the identity), and Hermitian. Further-
more, o0, + 0,0, =28,,E, = 6,6, + 6,6,, 6,6, = 6,0, 0,0, = jo,,
and 6,6,= j§,.k,/,m=1,23 in cyclic order. The generalized
Pauli matrices represent a subset of the so-called Dirac matrices
[3] obtained as the Kronecker (or direct) product of the ordinary
Pauli matrices.

IV. RECIPROCITY, LOSSLESSNESS, AND SYMMETRY

Five conditions will be considered: reciprocity, losslessness,
bilateral symmetry, transversal symmetry, and semireciprocity.
Some of these properties, and the constraints associated with
them, are well known [1]. Others, such as semireciprocity ob-
served in waveguides containing anisotropic media, have only
recently been investigated [5]. Also considered novel is the exten-
sion of these conditions to the system coupling matrix R.
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TABLEI
SUMMARY OF THE CONSERVATION Laws

Reciprocity Losslessness Bilat. symm. Trans. symm. Semireciprocity
z 1=17 z=-1 7 = gyl 7= 3,05 7=51"%,
Y Y=y Y= -y Y = apYop Y = 3,5, Y =3,Y5

-1 T -1 -1 ~ o~ -l T ~

Q Q@ =930 a3 Q =0200; Q = 01Q Q = 0200 Q0 = 0103Q 630
: -1 ~ ~ T~
s s=5 stes S = 5550, S = 3,55, s =553

-1 -1 -1 ~ -1 ~

T T = c3TTG3 T =a0To T = 0,70y T = 5,70, T = alugTTc3cl
-1 ~ ~ -1 ~ ~ -1 ~ -1 ~ '~

A A= 3ATS A =AY A =55, A = oAy A = 6,5:A 550,
-1 ~ ~ -1 ~ ~ -1 ~ -1 ~ ~

M M = O3MTG3 M = UlM <31 M = 02”&;2 M = onGz M = clchTcgcl
e T o~ o ~ T

R R = -g3R o3 R ='g)R o) R = -o,Ray R = gpRoy R = -g5103R 030,

A summary of the five conditions as they apply to the eight
representations defined in Section II is presented in Table I. The
entries in the first and second column are derived from the
appropriate condition expressed in terms of the impedance or
the scattering matrix, using the laws of transformation linking the
various representations. For example, the reciprocity condition of
R obtains from the reciprocity condition of M(x)

M(x)&BM™(x)é=E,. (11)

Taking the derivative of (11), substituting (9) and making use of
(11) and the properties of the generalized Pauli matrices, we find
that for a reciprocal network the system coupling matrix must
satisfy the expression

= — 5. RTs
=—6R'd,.

(12)
A similar derivation for the losslessness condition is given in [4].
The conditions for bilateral symmetry are obtained by stipulating
that a representation be unchanged when the corresponding
four-port is rotated around the bilateral symmetry axis, shown in
Fig. 1. Thus, in the scattering transfer representation, for exam-
ple, it is required that

as b,
a, b,
b3 = T 01 (13)
b, a,
Analogously, the scattering matrix of a transversally symmetric

four-port must satisfy

b, as
by a
o | =5 (14)
by as

A semireciprocal four-port is defined by'the Z matrix representa-
tion

Zy Zu Zl3 214
-Z Z. V4 Z
ZA 12 22 23 24 (1 5)
ZlB - Zzs Zsa Z34
- 214 Zy, - Z34 Zy

Such a network is a series connection of two four-ports, one
purely reciprocal in which there is a link between ports 1 and 3

and ports 2 and 4, but there is no coupling between line 1 and
line 2, and another, purely “antireciprocal” in which no coupling
exists between ports 1 and 3 and between ports 2 and 4. Table I
indicates that the Y and S matrices of a semireciprocal network
have the same structure as the Z matrix. The systems coupling
matrix of a semireciprocal distributed network on the other hand
must have the form

Ry, R, Ry, Ry
R —R R R
R= 21 11 23 24 (1 6)
Ry, =Ry Ry Ry,
- st R13 Ry — Ry

Compare this with the R matrix of a reciprocal network where
the four elements of the lower left block must have signs opposite
to that in (16).

A consistent set of conditions exists for a sixth property,
namely, pure antireciprocity has also been established but left out
of this discussion because we could find no physical example of a
distributed four-port behaving like a generalized gyrator.

A computer program has been implemented that converts any
listed complex 4X4 matrix into any other, and performs tests
described in Table I as required.

V. APPLICATION

In anisotropic layered waveguides, generally the TE mode (line
1) is coupled to the TM mode (line 2). This transmission medium
is noteworthy because it may or may not be bilaterally symmetric
depending on the configuration and can be reciprocal or semire-
ciprocal depending on the nature of the permittivity.

Solving the Maxwell equations in a stratified geometry de-
picted in Fig, 2, assuming a lossless, nonmagnetizable, homoge-
neous, and anisotropic dielectric, uniformity in the y (and z)
direction and exp( jwt) time dependency, it can be shown [5] that
(8) holds, where

5 ?E,(x)
no"*H,(x)

15 /?E,(x)
—no”H,(x)

a(x) =01 (17)

and 7, is the free-space wave impedance.
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Fig. 2. Geometry of an anisotropic slab waveguide. All regions may be
amsotropic. The electromagnetic wave propagates m the z direction. The
four-port represents the film region.

For a uniaxial dielectric in polar configuration (optic axis in
the y—z plane), or for a biaxial medium rotated around its
crystalline x-axis, the relative permittivity matrix and the system
coupling matrix is

€, O 0
[e]1=] O & ¢ (18)
0 €, ¢,
and
2
€,— B 0

0 Ve — B2
|WPNVAVAL 38 1/2yZ,Z, ¢},
-1/2yZ\Zse5, —1/2yZ\Z,¢3,

respectively, where the normalized line impedances are Z; = [¢ ,
—B?1"V2%and Z, =[(1—B?/¢,,)/¢,,1/* and B =k, /k, is the
effective guide index. For a uniaxial dielectric in longitudinal
configuration (optic axis in the x-y plane), or for a biaxial
medium rotated around its crystalline z-axis, the relative permit-
tivity matrix and the system coupling matrix is

CXX €XV O
0 0 e,
Azz _BZ 0
exx
Azz 2
0 -/ =8
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respectively, where
Zl = [Azz/exx - BZ] *1/2’
Z2 = [(1 - B,Z/cxx)/ezz]1/2y

and

= 2
Azz = €xx€_vy - lexyl .

Inspection of the above coupling matrices, and the computed
transfer matrices of an anisotropic layer corresponding to them,
shows that the polar configuration is bilaterally symmetric, and if
€,, is real (imaginary) then it is reciprocal (semireciprocal),
whereas the longitudinal configuration is not bilaterally symmet-
ric, and if e,, is real (imaginary) then it is semireciprocal
(reciprocal). In addition, both configurations satisfy the lossless-
ness condition and neither are transversally symmetric. Note also
that there is no coupling between TE and TM modes in the
longitudinal configuration when the direction of propagation is
normal to the interface (8 =0), as in the case of liquid-crystal
twist cells. -

V1. CONCLUSION

Conservation laws have been presented in a form suitable to be
applied to distributed, uniform integrated circuits. A new con-

1/2Z,Zye¢,, 1/2/Z,Z,¢,,
TZie, 12T,
(1-B%/e..)e.. 0

0 —(1- B e.. |

(19)

cept, semireciprocity, has been introduced and a device config-
uration, to which it applies, demonstrated.
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